

A Dust Aggregate Model Based on 必ずないないがはかずくなのまでのlisions DEM(?)衝突シミュレーション

和田浩二 千葉工業大学惑星探査研究センター 田中秀和¹,陶山徹²,木村宏³,山本哲生¹ ¹北大低温研,²新潟県立自然科学館,³CPS

A collision of BCCAs 8192+8192 ice particles (r=0.1 μ m, ξ_c = 8Å) Collision velocity = 22 m/s

Collisional growth of dust (< µm)

Planetesimal formation (> km)

Structure evolution of dust aggregates in protoplanetary disks

When and how are aggregates compressed and/or disrupted ?

Numerical simulation of dust aggregate collisions!

How are the BCCA structures compressed?

Dominik & Tielens 1997; Wada et al. 2007, 2008; Suyama et al. 2008

Collision velocity of dust in protoplanetary disks <

< several 10 m/s

e.g., $< \sim 50$ m/s (Hayashi model, without turbulence)

Is it possible for dust to grow through collisions? To what extent is dust compressed?

> Experimental: Blum & Wurm 2000, Wurm et al. 2005 Numerical: Dominik & Tielens 1997, Wada et al. 2008; 2009

 Dust should be compact in high velocity collisions causing their disruption
 Collisions of BPCA clusters implication for growth and disruption of compact dust

To construct a structural evolution model of dust aggregates by numerical simulations of aggregate collisions

Collisions of BCCA & BPCA clusters

Compression process

(BCCAs)

Gyration radius \rightarrow Degree of compression

 High-velocity collisions (BPCAs)
 Number of particles in the largest remnant → Growth efficiency
 Coordination numbers in the largest remnant

 \rightarrow Degree of compression

Simulation Method

Grain interaction model

Johnson, Kendall and Roberts (1971) Johnson (1987), Chokshi et al. (1993) Dominik and Tielens (1995,96) Wada et al. (2007)

Elastic spheres having surface energy

JKR and rolling resistance have been tested with experiments using $\sim 1 \mu m$ SiO₂ particles. (Heim et al. 1999; Poppe et al. 2000; Blum & Wurm 2000)

Grain interaction model

Johnson, Kendall and Roberts (1971) Johnson (1987), Chokshi et al. (1993) Dominik and Tielens (1995,96) Wada et al. (2007)

Elastic spheres having surface energy

A classical study

— Dominik and Tielens (1997) — Each grain motion is directly calculated, taking into account particle interactions

Confirmed by experiments (Blum & Wurm 2000)

✓ modeling grain interactions seriously

 $E_{\text{impact}} = \begin{bmatrix} \text{Limitations:} \\ \bullet & 2\text{-D, Head-on collision} \\ \hline & \bullet & 2\text{-D, Head-on collision} \\ \hline & \bullet & \text{Max. compression} \\ \hline & \bullet & \text{Small size} & (40 + 40 \text{ grains}) \\ \hline & \bullet & \text{Small size} & (40 + 40 \text{ grains}) \\ \hline & \bullet & \text{Initial structure: only 1 type} \end{bmatrix}$

 $E_{\rm roll}$: Energy to roll a grain by 90°

- E_{break} : Energy to break a contact
 - $n_{\rm k}$: Number of contacts in initial aggregates

Collisions between BCCA clusters

: Compression process

Initial Conditions and Parameters

Collisions of BCCA clusters

- BCCA clusters are
 - composed of 512, 2048, or 8192 particles (10 types randomly produced)
 - impacted by head-on collision

Particle : radius = 0.1 µm,
Ice ($E = 7 \text{ GPa}, v = 0.25, \gamma = 100 \text{ mJ/m}^2$)
SiO₂ ($E = 54 \text{ GPa}, v = 0.17, \gamma = 25 \text{ mJ/m}^2$)
Critical rolling displacement : $\xi_{\text{crit}} = 2, 8, 30 \text{ Å}$

Results are averaged

Example of simulations

Ice, 8192 + 8192, *ξ*_{crit} = 8 Å

Numerical Results on Gyration Radius

 $E_{\text{impact}} \sim 0.01 E_{\text{roll}}$ Impact velocity: 0.024 m/s $E_{\text{impact}} \sim 0.19 \, N \, E_{\text{roll}}$ Impact velocity: 13 m/s Ice, 8192 + 8192, $\xi_{crit} = 8$ Å $r_{\rm g} = \sqrt{\frac{1}{N} \sum_{i} \left| x_i - x_g \right|^2}$ x_{o} : center of mass

The number of particles N(< r) within r in an aggregate

Successive collisions in a BCCA mode

Suyama et al. 2008

✓ Fractal dimension ~2.5

✓ Decrease in density

CG by Dr. T. Takeda, 4D2Uproject, NAOJ

Summary of Compression Process

•3D BCCA clusters ($d_f \sim 2$) are not fully compressed •Fractal dimension for max. compression : $d_c \sim 2.5$ •Gyration radius: $r_{g} \sim r_{1}N^{\frac{1}{2.5}} [E_{impact} / (n_{k}E_{roll})]^{-0.1}$ $r_{g} \sim r_{1} N^{1/d_{c}} [E_{\text{impact}} / (NE_{\text{roll}})] - (1/d_{f} - 1/d_{c})$ • Successive collisions also lead to $d_c \sim 2.5$

The results for single collisions are applicable.

Collisions between BPCA clusters

: High-velocity collisions

Initial Conditions and Parameters

Collisions of BPCA clusters

BPCA clusters are:

- composed of 500, 2000, or 8000 particles (3 types randomly produced)
- Impact parameter: b (defined by using characteristic radius r_c)

Results are

averaged

ICE (E = 7.0 × 10¹⁰ Pa, v = 0.25, γ = 100 mJ/m², R = 0.1µm), critical rolling displace. $\xi_{crit} = 8$ Å
Impact velocity $v_{imp} = 6 - 260 \text{ m/s}$

A collision of BPCAs 8000+8000 ice particles (r=0.1 μ m, ξ_c = 8Å) Collision velocity = 57 m/s

CG by Dr. T. Takeda, 4D2Uproject, NAOJ

Collisions of BPCA clusters *N*=8000+8000, ice, $\xi_c = 8$ Å, $v_{imp} = 70$ m/s ($E_{imp} = 42 NE_{break}$

b = 0

b = 0.69

b = 0.39

b = 1.00

Degree of Disruption: Growth Efficiency

Largest fragment mass N_{large} : growth efficiency v_{imp} [m/s] (ice) 100 10 $\equiv N_{\text{large}} / N_{\text{total}}$ b = 0.39: growth efficiency 0.8 $\stackrel{r}{=} N_{\text{large}} / N_{\text{total}}$ $f > 0.5 \rightarrow +$ growth $f < 0.5 \rightarrow -$ growth 0.4 0.2 Ice,8A,500+500.b=0.39 Ice,8A,2000+2000,b=0.39 Ice,8A,8000+8000,b=0.39 0 0.1 10 100 1000 $E_{\rm impact} / (NE_{\rm break})$

Largest fragment mass N_{large} : growth efficiency $v_{\rm imp}$ [m/s] (ice) 100 10 $\equiv N_{\text{large}} / N_{\text{total}}$ b = 0.58: growth efficiency 0.8 $= N_{\text{large}} / N_{\text{total}}$ $f > 0.5 \rightarrow +$ growth $f < 0.5 \rightarrow -$ growth 0.4 0.2 Ice,8A,500+500,b=0.58 Ice,8A,2000+2000,b=0.58 Ice,8A,8000+8000,b=0.58 0 0.1 10 100 1000 $E_{\rm impact}$ / (N $E_{\rm break}$)

Largest fragment mass N_{large} : growth efficiency $v_{\rm imp}$ [m/s] (ice) 100 10 $\equiv N_{\text{large}} / N_{\text{total}}$ b = 0.69: growth efficiency $= N_{\text{large}} / N_{\text{total}}$ **0.**8 $f > 0.5 \rightarrow +$ growth $f < 0.5 \rightarrow -$ growth 0.4 0.2 Ice,8A,500+500,b=0.69 Ice,8A,2000+2000,b=0.69 Ice,8A,8000+8000,b=0.69 0 0.1 10 100 1000 $E_{\rm impact}$ / (N $E_{\rm break}$)

Largest fragment mass N_{large} : growth efficiency

Degree of compression: Coordination number

Coordination number $N_{\rm c}$

e.g.,

Number of particles in contact with a particle

 $N_{\rm c} = 4$

 $N_{\rm c}$ = 2 for BCCA and BPCA

Max. $N_c = 12$ for close-packing

An index of compression:

The more compact are aggregates, the larger $N_{\rm c}$ is.

What value of N_c is achieved at BPCA collisions?

Coordination number N_c @ BPCA collisions

Why $N_c = 4$?

Particles are stable enough with $N_c = 4$ in 3D:

Dust aggregates remain fluffly only through collisions.

Fractal dimension ~ 2.5 Coordination number < 4

Very fluffy planetesimals could be formed !? ~10⁻⁴ g/cc (Suyama et al. 2008) Other compression processes are required.

Icy aggregates can grow at collision velocity ~ 50 m/s.

Planetesimals can be formed through collisions of dust.