Planned Observation

by Venus Climate

Orbiter

Takeshi Imamura

Japan Aerospace Exploration Agency

Current status

- Flight model integration test is being conducted. Vibration test and electrical performance tests have been completed successfully. Thermal vacuum test is planed this month.
- * The spacecraft will be shipped to the launch site in March.

Venus Climate Orbiter/Akatsuki (PLANET-C project)

* First Japanese Venus mission

* Science target : * Mechanism of super-rotation * Structure of meridional circulation * Meso-scale processes * Formation of H2SO4 clouds * Lightning * Active volcanism, inhomogeneity of surface material * Zodiacal light (during cruise) * Launch : May 2010 \rightarrow Arrival: December 2010 * Mission life : More than 2 Earth years

Comparative planetary meteorology

Which is working? Any other mechanisms?

 Key parameters: Planetary-scale waves, Meridional circulation, Large-scale turbulence

Cloud processes

- * Dynamics of cloud formation, role of meridional circulation in transporting cloud-related species
- * Origin of UV markings
- * Whether lightening occurs or not

Left: Knollenberg et al. (1980), J. Geophys. Res.

Concept of meteorological satellite

* Capturing global structures with emphasis on the low latitude

 \rightarrow Wide FOV imaging from equatorial orbit

★ Covering spatial scales from meso to global
→ Large-format 2D detectors

★ Covering time scales from hours to months
→ Continuous sampling, repeating for all orbits

Studying vertical structures
Multi-wavelength imaging + radio science

Observation from an orbiter

- * 4 cameras sounding different altitudes, a high-speed lightning detector, and an ultra-stable oscillator for radio science
 - Constructing 3-D model of atmospheric dynamics

Radio science (vertical structure)

Lightning and airglow camera

Onboard instruments

Instrument	FOV	Detector	Filters	Width	Targets	
1-μm Camera	12°	Si-CSD/CCD	1.01 µm (night)	0.04 µm	Surface, Clouds	
IR1		1024 x 1024 pix	0.97 µm (night)	0.04 µm	H2O vapor	
			0.90 µm (night)	0.03 µm	Surface, Clouds	
			0.90 µm (day)	0.01 µm	Clouds	
2-µm Camera	12°	PtSi-CSD/CCD	1.735 μm (night)	0.04 µm	Clouds, Particle size	
IR2		1024 x 1024 pix	2.26 µm (night)	0.06 µm		
			2.32 µm (night)	0.04 µm	CO below clouds	
			2.02 µm (day)	0.04 µm	Cloud-top height	
			1.65 μ m (cruise)	0.3 µm	Zodiacal light	
UltraViolet Imager	12°	Si-CCD	283 nm (day)	15 nm	SO ₂ at cloud top	
UVI		1024 x 1024 pix	365 nm (day)	15 nm	Unknown absorber	
Longwave IR Camera	12°	Bolometer	10 µm	4 µm	Cloud-top	
LIR		240 x 320 pix	(day/night)		temperature	
Lightning & Airglow	16°	8 x 8 APD	777.4 nm (night)	4.2 nm	OI lightning	
Camera		(50kHz sampling	552.5 nm (night)	4.7 nm	O2 HerzbergII ariglow	
LAC		in lightning mode)	557.7 nm (night)	3.1 nm	OI airglow	
			630.0 nm (night)	3.5 nm	OI airglow	
Ultra-stable oscillator			X-band		Vertical prifiles of T,	
for Radio Science RS			(8.4GHz)		H2SO4 (g), Ne	

Observations to be conducted during one orbital revolution

Temperature / H₂SO₄ vapor / Ionosphere by radio occultation Close-up images/ Lightning/Airglow (~3 hours x 2)

Orbital motion synchronized with the super-rotation

A concept similar to geostationary meteorological satellite

(movie provided by M. Odaka)

Wavelengths for cloud-tracking

365nm, cloud top (65km), dayside

365 nm image taken by PVO/OCPP Knollenberg et al. (1980): J. Geophys. Res.

0.9µm, lower cloud (50km), dayside

Cloud altimetry by

top(65m), dayside

 $2.02\mu m$, cloud

VenusExpress/VIRTIS Titov et al. (2008): Nature.

0.98 um image taken by Galileo/SSI Belton et al. (1991): Science . * Cloud top and bottom will be covered on both dayside and nightside.

G um im agreekon by Su

dayside & nightside

 $10\mu m$, cloud top (65km),

8.6 um image taken by Subaru telescope, high-pass filtered

2.3µm, lower cloud (50km); nightside

2.3 um image taken by Galileo/NIMS Carlson et al. (1991): Science.

Accuracy of wind velocity measurement

	Individual vectors	After smoothing to	Individual vectors
	using images	30 ° x 30 °	obtained by tracking
	separated by 2 hours	resolution	long-lived clouds for 10
	(5°x5° resolution)		hours
UVI	12 km/2h = 1.7 m/s	0.28 m/s	12km/10h = 0.33 m/s
IR1			
IR2			
LIR	53 km/2h = 7.3 <u>m/s</u>	1.2 m/s	53km/10h = 1.5 m/s

* Cloud position accuracy is assumed to be 1 pixel.

Mean meridional circulation is obtained by averaging large number of vectors and will be determined with much higher accuracy than above estimates.

Latitudinal coverage of radio occultation

3-D sounding

Complementary missions

	VCO/Akatsuki	Venus Express
Instruments	5 cameras Radio science	3 spectrometers 1 camera Plasma analyzer Magnetometer Radio science
Target	Atmospheric dynamics	Atmospheric chemistry and dynamics, Surface processes, Plasma environment
Orbit	Equatorial	Polar

Coordinated observations are being planned.

How to extract Fourier components

* Zonal-mean

* Solar-fixed components* Traveling planetary-scale waves

* Meso-scale disturbances

→Continuous, regular sampling is a key to distinguish these components.

Zonal-mean

* Major axis of the orbit is nearly fixed with respect to the inertial frame. Then, averaging the data obtained during one Venus year (imaging) or half year (radio occultation) gives a zonal-mean on the assumption that the atmospheric state is stable and the dependence on the longitude is negligible.

Solar-fixed components

* The mean state for each local time is obtained by averaging data in a local time-latitude coordinate, and then the zonal-mean is subtracted from it.

Traveling planetary-scale waves

- Subtraction of the local time-fixed structure from individual observations gives traveling components. Amplitudes of waves will be extracted by convolving (in longitude and time) the data with sine waves of varying zonal wavenumber and phase speed.
- * Fourier analysis of variables at a specific local time regularly sampled once per orbital revolution also gives temporal spectra.

Meso-scale eddies

In addition to close-up images near periapsis, development of meso-scale eddies over 1 Earth day can be observed. Distribution of meso-scale structures over the entire cloud layer is obtained by combining data over one super-rotation period.

* Bit rate is relatively high during the 1-2 months following VOI (Venus Orbit Insertion).

* Well-laid observation plan is needed to reduce the data volume.

Orbit just after VOI

Observation programs to be installed in the Sensor DE

Obs program	Channels	Volume (MB)
night-nominal	IR2 1.73, 2.26, 2.32um, LIR	6.18
night-short	IR2 2.26um, LIR	2.28
IR1-night-nominal	IR1 0.9um(night), 0.97um, 1.01um	6
IR1-night-short	IR1 1.01um	2
day-nominal	IR1 0.9um(day), IR2 2.02um, UVI 283, 365nm, LIR	8.18
day-short	IR1 0.9um(day), IR2 2.02um, UVI 365nm, LIR	6.18
day-closeup- nominal	UVI 283nm, 365nm, LIR	4.18
day-closeup- short-2times	UVI 365nm, LIR x 2times	10.9
day-closeup- short-7times	UVI 365nm, LIR x 7 times	15.8
limb	IR1 0.9um(day), UVI 365nm	4

	Dec 2010		13.5 14.5	day-closeup-short- day-closeup-short-	7times 2times
Time from <u>apo (h)</u>	Obs. program		15 16	limb LAC	y viev
0	IR1-night-nominal night-nominal		18	IR1-night-nominal	wing
2	IR1-night-nominal night-nominal		20	IR1-night-nominal	Z
4	IR1-night-nominal night-nominal	Nia	22	IR1-night-nominal	ght vie
6	IR1-night-nominal night-nominal day-nominal	ht viewi	24	IR1-night-nominal night-nominal	ewing
8	IR1-night-nominal	na	26	night-nominal	
10	day-nominal IR1-night-nominal	Day vi	20	night-nominal	
	night-nominal day-nominal	ewing	Total volum	e : 226MB (130 ir ession (x1/3) : 75	nages) MB
12	IR1-night-nominal night-nominal day-nominal	, _	Obs time fac < Telemetr	ctor (x3/4) : 55ME y rate of 72MB/da	B ay

Policy of data reduction

- * Frequent sampling is required for wavelengths used for cloud tracking, while it can be relatively sparse for wavelengths used for observing trace gases, cloud microphysical parameters and surface properties
- Dark frame is subtracted from Venus frames by onboard data processing, and dark frames are not transmitted in the nominal operation phase.
- * Lossless compression is the nominal, but lossy compression might also be considered depending on the telemetry rate (under discussion).

Automatic Level 3 processing

* Limb fitting to precisely determine the direction of camera FOV

 Projection onto longitude-latitude grids assuming typical cloud height (2 levels)

* Cloud tracking by cross correlation method

* Correction of erroneous vectors

(Method developed by Toru Kouyama at U. Tokyo/ISAS)

Summary

- * VCO/Akatsuki will address the unique dynamical state of the Venus atmosphere with systematic sampling of meteorological variables from equatorial orbit.
- Three-dimensional structure of the atmosphere and its temporal variation will be observed by using 4 cameras, a high-speed lightning detector and radio occultation.
- * Data processing pipeline is under development. Wind vectors as well as image data and radio occultation data will be released to the public. The dataset will enable quantitative studies of eddy momentum transport and meridional circulation.

1 Section

VCO/Akatsuki message campaign

"We will deliver your message to the bright star Venus" - "AKATSUKI" Message Campaign -

The message sheet is put on a table outside of the lecture room.

Don't miss it ! Only names (without messages) are ok.

references

- Belton et al., 1991: Images from Galileo of the Venus cloud deck, Science 253, 1531-1536.
- Carlson et al., 1991: Galileo Infrared Imaging Spectroscopy Measurements at Venus, Science 253, 1541-1548.
- Knollenberg et al., 1980: The clouds of Venus: A synthesis report, J. Geophys. Res. 85(A13), 8059-8081.
- * Schubert, 1983: Venus, University of Arizona Press, 681-765.
- Titov et al., 2008: Atmospheric structure and dynamics as the cause of ultraviolet markings in the clouds of Venus, Nature 456, 620-623.