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1. Introduction

Thermal convection is an important

motion in geophysical fluid.

Thermal convection in a shear flow
(flow with velocity gradient)

• Vertical shear· · ·Asai (1970), etc.

e.g., snowbands over the Japan Sea in winter

• Horizontal shear

· · ·Davies-Jones (1971),

Yoshikawa&Akitomo (2003), etc.

e.g., zonal band structure of Jovian atmosphere

There are few studies on thermal

convection in a horizontal shear flow.



In this study : Thermal convection in a sine-type

horizontal shear flow in a rotating system

◎ In the case of vertically-directed

rotating axis

“Wave Pattern Formation from Thermal

Convection in a Horizontal Shear Flow”

Previous study : Furukawa&Niino (2006)
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◎ In the case of tilted rotating axis

“Interaction between a Sine-type Horizontal

Shear Flow and Thermal Convections in a

Rotating System with a Tilted Axis”

Previous study : Hathaway&Somerville (1987)
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2.Model Equations and Computing Configuration

Basic equations

Boussinesq fluid in a system rotating at an angular

velocity of f/2 around a rotating axis

Eq. of Motion :
∂u

∂t
+ (u · ∇)u = −∇p − f × (u − uB) + Ra b

+∇2(u − uB)

Thermal Eq. :
∂b

∂t
+ u

∂b

∂x
+ v

∂b

∂y
+ w

∂b

∂z
= w + ∇2b

Continuity Eq. :
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

f =


f cos θ

0
f sin θ

 , b =


0
0
b

 , uB =


0
vB

0

 .

( 0 ≤ θ ≤ π/2 : latitude )

b : buoyancy, Ra : Rayleigh number,

∇2 : laplacian, vB : basic flow.

Prandtl Number = 1
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Boundary condition

Periodic in x, y of period Lx, Ly .

Free-slip and fixed temp. at z=0,1 .

Basic flow (horizontal shear flow)

vB = Re Lx cos
2π

Lx
x

 Re : Reynolds
number
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Numerical computation method

• Space discretization : spectral method

x, y direction : Fourier series expansion
(truncation wavenumber 21)

z direction
θ = π/2 : sin, cos series expansion (10)

θ 6= π/2 : Legendre polynomial expansion (20)
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• Time evolution : 4th order Runge-Kutta method

Computational domain : Lx = Ly = 10

Attention : For convenience of modeling, positive x direction is
northward, positive y direction is westward. Please no flames.



3.Wave Pattern Formation from Thermal Convection
in a Horizontal Shear Flow ( θ = π/2 )

Nonlinear time evolution

(1) Roll convection parallel to mean flow

→(2) Disturbance of zonal wavenumber 4,5

→(3) Barotropic eddy of zonal wavenumber 1
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(1) t = 1.3 (2) t = 1.9 (3) t = 2.6
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Top : horizontal sectional view of temperature field (z = 0.5)
Bottom :mean flow profile (vertically and zonally averaged velocity v)



Analysis

It turns out that
barotropic eddy of zonal
wavenumber 1 is formed
by barotropic instability.

However,
initial sine-type shear flow
is barotropically stable.

Roll convections distort
barotropic field and makes
horizontal shear flow unstable.

【Two-stage instability】
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Naoaki SAITO, Keiichi ISHIOKA, 2008 :

Wave Pattern Formation from Thermal Convection

in a Horizontal Shear Flow. Nagare Multimedia .

http://www.nagare.or.jp/mm/2008/saito/



4. Interaction between a Sine-type Horizontal Shear Flow

and Thermal Convections in a Rotating System

with a Tilted Axis

4-1. Review of Hathaway& Somerville (1987)

Nonlinear time evolution of

thermal convection in sine-

type horizontal shear flow at

low latitudes in a rotating

atmosphere.

• Basic equations and configu-

ration are the same as my

study, except for vertical

rigid boundary condition.

(u = v = 0 at z = 0,1 )
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Result

Roll convection forms a herringbone

pattern, and mean flow is accelerated.

Herringbone pattern :

Interpretation

The Coriolis force turns the convective

flow, and momentum transport

accelerates mean flow.

The aim of my study is

to explore the mechanism of

acceleration of mean flow

by more detailed analyses

such as linear stability analyses.

Top : mean flow

Bottom :

convective flow



4-2. Nonlinear Time Evolution

Config. θ=π/12, Re=5, Ra=104, Ta=f2=0,104,3×104,105.

Result Ta=0 and 104 : Herringbone pattern is not formed.

Ta=3×104 and 105 : Herringbone pattern is formed.

Ta = 3 × 104 Ta = 105
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Top : horizontal sectional view of temperature field (z = 0.5)
Bottom :mean flow profile (vertically and zonally averaged velocity v)



4-3. Linear Stability Analysis

Analyze the initial field in the cases of Ta = 3×104 and 105 .

Result

The wavenumber, the structure and the growth rate of
the largest growing eigenmode are consistent with the
time evolution.

• In the case of Ta = 105 (Horizontal sectional view of temp. field)

eigenmode eigenmode time evolution
(peak : x = 0) (peak : x = 5) (※ nonlinear stage)

y

x

Herringbone pattern ⇐ the structure of the eigenmode



Result 2

Growth rate of the deviation of mean flow velocity 〈v〉
from initial velocity vB is twice as large as the largest

eigenvalue.

⇒ The acceleration of mean flow is due to the second-

order effect of the eigenmode.



4-4. Analyses of second-order effects of the eigenmode

Time evolution in
the case of Ta=3×104

〈v〉

x

(dashed line : initial profile)

Acceleration by the eigenmode with a

peak at x = 0 in the case of Ta=3×104
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(Direct momentum transport, the Colioris force acting

on the second-order vertical flow, viscosity, summation)

Contribution of the Colioris force acting on the second-

order vertical flow is larger than that of direct momen-

tum transport proposed by Hathaway&Somerville (1987).



4-5. Discussion on the mechanism of the acceleration
Further detailed analyses show that
the following process is important.

1.



Roll convection localizes around
the fastest area of mean flow.

Axis of roll tilts parallel to f .

Rotation of roll is strong
in the inertially unstable area.

↓
2. Heat transport by disturbances

generates buoyant deviations.
The upper deviation is larger.

↓
3. Second-order vertical flow occurs.

Vertical mean near x=0 : 〈w〉>0
↓

4. The Colioris force acting on 〈w〉
accelerates the mean flow.

(Horizontal comp. of f is effective.)

★This mechanism also accounts for the
asymmetric structure in nonlinear stage.
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5. Conclusion

Thermal convection in a sine-type horizontal shear flow

in a rotating system is studied numerically.

◎ In the case of vertically-directed rotating axis

• Barotropic eddy of zonal wavenumber 1 is formed by

barotropic instability.

• Two-stage instability :

Initial barotropically-stable field is destabilized

by roll convection.⇒Barotropic instability occurs.



◎ In the case of tilted rotating axis

• Ta = 3 × 104 and 105 : Herringbone pattern is formed.

Ta = 3 × 104 : Mean flow is largely accelerated.

• Herringbone pattern : eigenmode of initial field

• Acceleration of mean flow :

direct momentum

transport
<

the Colioris force acting on

the second-order vertical flow

• vertical heat transport by disturbances

⇒ buoyant deviations

⇒ vertical flow + the Colioris force

⇒ acceleration of mean flow

• This process may work as a new mechanism of

the acceleration of zonal flows in rotating planets.


