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Summary: To study multiple stable states of general circulations of planetary atmospheres, we performed numerical 
calculations of planetary axial symmetric 2-D Boussinesq fluid primitive equations minutely, and explored multiple stable 
solutions.  The obtained position of the region of multiple solutions in non-dimensional parametric space agrees with 
Matsuda (1980, 1982) who used a low order model and suggested the existence of the multiple solutions.  
Our numerical solutions show the characteristics of type V (Venusian thermal wind balance) and type D (direct cell 
balance) very well.  There are some unsteady stable solutions, whose unsteadiness is caused by symmetric instability.  

3. Numerical experiments
To explore multiple solutions, parameter sweep experiments were carried out.
Swept non-dimensional parameters are!! ! ! ! ! ! ! ! ! ! ! ! and !!  .1

τΩ
EH ≡ νH

a2Ω
,RT ≡

gH∆H

a2Ω2
,

Fixed non-dimensional parameters are Pr ≡ νV/κV = 1, EV ≡ νV/(H2Ω) = 10-2, and 
ΔH = 1/10.  Dimensional constants are Θ0 = 450 K, a = 6×106 m, H = 5×104 m, 
and g = 8.9 m/s2.
Numerical solutions were obtain by integrating a numerical model of the time-
dependent version of the governing equations.  The numerical model uses a 
spectral trasform method for meridional direction (truncation wave number 42; 
32 grid point from equator to pole), a central difference method for vertical (50 
layers), and the 4th order Runge-Kutta method for time-integrations.  
We used a state at rest with a constant potential temperature and/or the 
stable solution achieved with other parametric values to obtain multiple 
solutions.
! This model is almost same as the model used in Yamamoto et al. (2009) who 
explore the connection between the Held & Hou (1980) model of the Hadley 
circulation and Gierasch (1975)-Matsuda model of the super-rotation.
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4. Numerical results

5. Discussion

Left figure shows types of solution in the 
parametric space ((τΩ)-1, EH, RT).  There 
is a region where both solutions type V 
and type D exist (green region).
Right figure shows numerical solutions at 
the steady states (time averaged states 
for non-steady stable solutions) at the 
positions shown by balloons.  
We can see that obtained multiple solutions (balloons f, h, and #3) show 
characteristics of type V and type D, respectively.  We obtain some unsteady 
stable solutions (balloons e, h, and #1-5).  The unsteadiness is caused 
mainly by a symmetric instability.

The location of the region of multiple solutions of our results agrees with the 
Matsudaʼs diagram qualitatively.  However we should note that his diagram is 
based on the assumption of τ ~ H2/νV.  
! We also computed a 3-D model without the high horizontal diffusion, however 
we did not obtain multiple solutions.  This is because, an non-axisymmetric 
eddy momentum transport is not large enough to maintain a solution of type V.

1. Introduction
It is observed that the Venusian atmosphere rotates about 60 times faster 
than its solid planet.  This phenomena is called super-rotation, and its 
mechanism is a hot topic of research of planetary atmospheres.
! Meanwhile, it is suggested that another state of the atmospheric motion is 
possible in the Venus by Matsuda (1980, 1982).  Using a planetary axial 
symmetric 2-D low order (truncated at wave number 3) idealized model,
he showed that there are multiple equilibrium solutions:
  type V (Venusian thermal wind balance): 
! ! a solution with strong zonal wind and weak meridional circulation,  and 
  type D (direct cell balance): 
       a solution with weak zonal wind and strong meridional circulation
in some Venus-like parametric range (right figure).  
Recently Kido & Wakata (2008) succeeded to show 
multiple stable solutions in a Venus-like atmospheric 
general circulation 3-D model.  
! In this study, we explore multiple stable solutions, 
and investigate their properties in a wide parametric 
range in an axisymmetric 2-D Boussinesq fluid 
primitive system. This system is same as Matsudaʼs 
model, but we use a full non-linear high order model 
to obtain numerical solutions.
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Fig. 7 Contour maps of U in the */*d-Gr co-
       ordinate in the case of *1, * =10-3 is 

       employed in these figures. Values attached 
       to contour lines in (a) are those of U (nor-

       malized by R/*v). In some portion of these 
       diagrams U is multi-valued. Sections of this 

       contour maps at fixed */d (designated by 

      *
, * and *) are given in (b), which is 

       schematically depicted in arbitrary scales. 
       Figure (c) is a schematic three-dimensional 

       diagram showing U as a function of */*d 
       and Gr. Notice the portion of multi-valued. 

       Kind of balance is indicated in this figure 
       (see Figs. 8 and 9 also). 

treatments any effect to suppress the Gierasch 
acceleration mechanism was not considered so 
that large Gr was always favourable for high 
atmospheric rotation. In the present case, the 
very large meridional temperature gradient can 
not be maintained by the vertical shear of the 
zonal winds. For attaining such a balance a large 
vertical shear of the zonal winds must be gen-
erated by the fast meridional circulation. But 
too fast meridional circulation violates the con-
dition under which the present mechanism for 
acceleration of the mean zonal flow can work as 
long as vH is finite. Hence such a balance can 
not exist and as a result only the direct cell 
balance can exist under a very large differential 
heating. For the cases * and * interpretation of 
solutions could be given in the same way as in 
the case *.

Fig. 8 Contour maps of V. As in Fig. 7 
      except for V.

Fig. 9 Schematic diagram illustrating regime of 
       each balance in the case of  *1. Thermal 

      wind balance of the Venus type I (V-I) is the 
       region where there is only one solution, 

      while thermal wind balance of the Venus 
      type II (V-II) is the region where there is a 

      solution of direct cell balance also, together 
      with solutions of thermal wind balance of 

      the Venus type. D and E indicate the same 
       as in Fig. 2. Coordinates of some points 

       are written, except for numerical factors, 
      in the figure.

Matsudaʼs regiem diagram.  V-II 
corresponds to the region of 
multiple solutions. (Matsuda, 1980)

2. Governing equations and boundary conditions

2 DESCRIPTIONS OF THE SYSTEM

Governing equations

The governing equations used in this study are the primitive equations of

Boussinesq fluid with a Newtonian heating/cooling, under the assumptions

of a steady state (∂/∂t = 0, where t is time), axial symmetry (∂/∂λ = 0,

where λ is longitude), and equatorial symmetry. The equations in spherical

geometry are given by,

v

a

∂u

∂φ
+ w

∂u

∂z
− uv tan φ

a
− 2Ωv sin φ = νHDH(u) + νV

∂2u

∂z2
, (1)

v

a

∂v

∂φ
+ w

∂v

∂z
+

u2 tan φ

a
+ 2Ωu sin φ = −1

a

∂Φ

∂φ
+ νHDH(v) + νV

∂2v

∂z2
,(2)

v

a

∂Θ

∂φ
+ w

∂Θ

∂z
= −Θ − Θe

τ
+ κV

∂2Θ

∂z2
, (3)

∂Φ

∂z
= gαΘ, (4)

1

a cos φ

∂

∂φ
(v cos φ) +

∂w

∂z
= 0. (5)

Here u, v, w are the zonal, meridional, and vertical components of the veloc-

ity, Θ is the potential temperature, and Φ ≡ p/ρ, where p is the pressure

and ρ is the density. Independent variables φ and z are the latitude and

hight, respectively. The constants a and Ω are the radius and angular veloc-

ity of the planet, g is the gravitational acceleration, τ is the time constant

for Newtonian heating/cooling, νH and νV are the horizontal and vertical
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diffusion coefficients, κV is the vertical thermal diffusion coeffcient, and α is

the thermal expansion coeffcient.

The quantity Θe in the Newtonian heating/cooling term in equation (3)

is a potential temperature in radiative equilibrium which is given by the form

Θe

Θ0
= 1 − 2

3
∆HP2(sin φ) + ∆V

(
z

H
− 1

2

)
, (6)

where Θ0 is the global mean of Θe, ∆H and ∆V are the fractional change

of potential temperature in radiative equilibrium from equator to pole and

from the top to the bottom, respectively, and P2 is the second Legendre

polynomial P2(x) = (3x2−1)/2. We assume the thermal expansion coeffcient

as α = 1/Θ0.

Horizontal diffusion terms, DH(u) and DH(v), are defined in the form to

conserve angler momentum (Becker, 200111)), as follows:

DH(u) =
1

a2 cos φ

∂

∂φ

(
cos φ

∂u

∂φ

)
− u

a2 cos2 φ
+

2u

a2
, (7)

DH(v) =
1

a2 cos φ

∂

∂φ

(
cos φ

∂v

∂φ

)
− v

a2 cos2 φ

+
1

a

∂

∂φ

[
1

a cos φ

∂

∂φ
(v cos φ)

]
+

2v

a2
. (8)

A zero stress condition is imposed at the top boundary, at z = H, and

the stress at the ground is taken to be proportional to the surface wind.

Zero vertical heat flux is imposed at both top and bottom boundaries, so
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boundary conditions are

w =
∂u

∂z
=

∂v

∂z
=

∂Θ

∂z
= 0 at z = H, (9)

w =
∂Θ

∂z
= 0, νV

∂u

∂z
= Cu, νV

∂v

∂z
= Cv at z = 0, (10)

where C is a drag coefficient.

Non-dimensionalization

To clarify the dependence of obtained solutions on the external parameters,

we derive non-dimensional form of the governing equations. First, we write

variables as,

u = Uu∗, v = V v∗, w = Ww∗, Θ =Θ 0Θ
∗, and z = Hz∗, (11)

where U, V,W, Θ0, and H are the scaling values, and the asterisk denotes non-

dimensional variables. Considering the hydrostatic equilibrium equation (4)

and its meridional derivative, Φ and ∂Φ/∂φ can be written as

Φ = gHΦ∗,
∂Φ

∂φ
= β∆HgH

∂Φ∗

∂φ
, (12)

where β ≡ (∂Θ/∂φ)/(∂Θe/∂φ) is the ratio between meridional gradient of

potential temperature and that in the radiative equilibrium state. Substi-

tuting (11) and (12) to the governing equations (1)-(5), the non-dimensional
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Θe

Θ0
= 1− 2

3
∆HP2(sinφ), P2(sinφ) =

1
2
(3 sin2 φ− 1),

The axisymmetric 2-D Boussinesq fluid primitive equations are as follows,

Symbols
(u, v, w):  zonal, meridional, and vertical components of the velocity,
Θ: potential temperature, ! ! Φ = p/ρ, p: pressure, !ρ: density,!! φ: latitude, ! z: height, 
a and Ω: radius and angular velocity of the planet, !! g: gravitational acceleration,
τ: time constant for Newtonian heating/cooling, !! κV: vertical thermal diffusion coefficient,
νH and νV: horizontal and vertical momentum diffusion coefficient,
Θ0: global mean of Θe, ! ! α = 1/Θ0,! !  ΔH: fractional change of Θe from equator to pole.

Momentum equations

Thermodynamic equation

Hydrostatic equation

Continuity equation

Basic potential temperature 
for Newtonian heating/cooling

Horizontal diffusion
(Becker, 2001)

Boundary conditions z = H,

u = v = w =
∂Θ
∂z

= 0 at z = 0.
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! The solutions in (τΩ)-1-EH plane (yellow, RT = 104), show that the region of 
multiple solutions disappears for EH ≦ 100.25 ; this agrees with the results of 
Matsuda.  A detail of this property is shown in the figures above, which show 
the values of S, RV, and β, respectively (their definitions are shown at the top 
of each figure).  We can see that the upper limit of 1/(τΩ) for multiple 
solutions increases with EH, but the lower limit is confined.  The solutions 
located on the down slope in the figures of S and β (ballon #5) show 
intermediate properties between type V and type D.
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U: meridional averaged zonal wind at 
the topS ≡ U

aΩ
RV ≡

V

aΩ
β ≡ ∆Θ

∆Θe

V: meridional wind averaged in upper 
half domain

!!: vertical mean potential temperature 
difference between equator to pole
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Inner circle: type V    black: steady
Outer circle: type D   red: non-steady
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