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1 AN S L L e Y

Summary: To study multiple stable states of general circulations of planetary atmospheres, we performed numerical
calculations of planetary axial symmetric 2-D Boussinesq fluid primitive equations minutely, and explored multiple stable
solutions. The obtained position of the region of multiple solutions in non-dimensional parametric space agrees with
Matsuda (1980, 1982) who used a low order model and suggested the existence of the multiple solutions.

Our numerical solutions show the characteristics of type V (Venusian thermal wind balance) and type D (direct cell
balance) very well. There are some unsteady stable solutions, whose unsteadiness is caused by symmetric instability.

1. Introduction

It is observed that the Venusian atmosphere rotates about 60 times faster
than its solid planet. This phenomena is called super-rotation, and its
mechanism is a hot topic of research of planetary atmospheres.

Meanwhile, it is suggested that another state of the atmospheric motion is
possible in the Venus by Matsuda (1980, 1982). Using a planetary axial
symmetric 2-D low order (truncated at wave number 3) idealized model,
he showed that there are multiple equilibrium solutions:

-----------------------------------------------------------------------------------------------------------------------------------------------------

- type V (Venusian thermal wind balance):
' a solution with strong zonal wind and weak meridional circulation, and

type D (direct cell balance):
' a solution with weak zonal wind and strong mer/d/onal circulation

----------------------------------------------------------------------------------------------------------------------------------------------------

in some Venus-like parametric range (right figure).
Recently Kido & Wakata (2008) succeeded to show
multiple stable solutions in a Venus-like atmospheric
general circulation 3-D model.

In this study, we explore multiple stable solutions,
and investigate their properties in a wide parametric
range in an axisymmetric 2-D Boussinesq fluid
primitive system. This system is same as Matsuda’s ' T
model, but we use a full non-linear high order mode| Matsudass regiem diagram. V-

: : . corresponds to the region of
to obtain numerical solutions. multiple solutions. (Matsuda, 1980)

The axisymmetric 2-D Boussinesq fluid primitive equations are as follows,
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(u,v,w): zonal, meridional, and vertical components of the velocity,
©O: potential temperature, d = p/o, p: pressure, o: density, ¢: latitude, z: height,

a and Q: radius and angular velocity of the planet, g: gravitational acceleration,

. time constant for Newtonian heating/cooling,  xy: vertical thermal diffusion coefficient,
vy and vy: horizontal and vertical momentum diffusion coefficient,

®o: global mean of O, a = 1/0, Ag: fractional change of ©, from equator to pole.

3. Numerical experiments

To explore multiple solutions, parameter sweep experiments were carried out.
HAH 14 1
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Fixed non-dimensional parameters are Pr=vv/ixy =1, Ey = vv/(H?*C2) = 102, and

An = 1/10. Dimensional constants are 09 =450 K, a = 6x10°m, H = 5x10*m

and g = 8.9 m/s2.

Numerical solutions were obtain by integrating a numerical model of the time-

dependent version of the governing equations. The numerical model uses a

Swept non-dimensional parameters are Ry =

spectral trasform method for meridional direction (truncation wave number 42;

32 grid point from equator to pole), a central difference method for vertical (50
layers), and the 4th order Runge-Kutta method for time-integrations.
We used a state at rest with a constant potential temperature and/or the
stable solution achieved with other parametric values to obtain multiple
solutions.

This model is almost same as the model used in Yamamoto et al. (2009) who
explore the connection between the Held & Hou (1980) model of the Hadley
circulation and Gierasch (1975)-Matsuda model of the super-rotation.

4. Numerical results
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zonal wind (color tone), meridional streamfunction (contour),
and vertical mean potential temperature (line)
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Left figure shows types of solution in the
parametric space ((t€2)'!, Ex, Rr). There
IS a region where both solutions type V

and type D exist (green region). -
Right figure shows numerical solutions at £
the steady states (time averaged states
for non-steady stable solutions) at the

positions shown by balloons.
We can see that obtained multiple solutions (balloons f, h, and #3) show

characteristics of type V and type D, respectively. We obtain some unsteady
stable solutions (balloons e, h, and #1-5). The unsteadiness is caused
mainly by a symmetric instabillity.

JANG,
— U U: meridional averaged zonal wind at RV = V V: meridional wind averaged in upper ﬁ — A®: vertical mean potential temperature
T CLQ the top Q half domain A®, difference between equator to pole
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The solutions in (7Q2)-!-Ex plane (yellow, Rr = 104), show that the region of
multiple solutions disappears for Ex = 10925 ; this agrees with the results of

Matsuda. A detail of this property is shown in the figures above, which show
the values of S, Ry, and (3, respectively (their definitions are shown at the top
of each figure). We can see that the upper limit of 1/(z€2) for multiple
solutions increases with Eg, but the lower limit is confined. The solutions
located on the down slope in the figures of S and 5 (ballon #5) show
intermediate properties between type V and type D.

The location of the region of multiple solutions of our results agrees with the
Matsuda’s diagram qualitatively. However we should note that his diagram is
based on the assumption of 7 ~ H?/vy.

We also computed a 3-D model without the high horizontal diffusion, however
we did not obtain multiple solutions. This is because, an non-axisymmetric
eddy momentum transport is not large enough to maintain a solution of type V.
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